Piotr E. Marszalek

Marszalek

Professor of Mechanical Engineering and Materials Science

My research focuses on investigating relationships between structural and mechanical properties of biopolymers (polysaccharides, DNA, proteins), which I study at a single molecule level. My main approaches are experimental scanning probe microscopy techniques and computational methods involving Molecular Dynamics simulations and ab initio quantum mechanical calculations. The ultimate goal of this research is to understand the above-mentioned relationships at an atomic level and to apply the knowledge gained towards elucidating basic phenomena such as: molecular recognition that mediates interactions between proteins and sugars, mechanotransduction that underlies mechanical sensing and hearing in all organisms, and protein folding that is fundamental to all biology. Our DNA research is aimed at exploiting atomic force microscopy techniques to develop new ultra-sensitive assays for detecting and examining DNA damage, the process underlying carcinogenesis, and to increase our mechanistic understanding of DNA damage and repair processes. This research, in addition to its basic science aspects will lay a foundation for the future use of AFM technologies in the nanoscale DNA diagnostics with a potential to directly benefit human health.

Appointments and Affiliations

  • Professor of Mechanical Engineering and Materials Science

Contact Information

  • Office Location: 3387 Fciemas Building, Box 90300, Durham, NC 27708
  • Office Phone: (919) 660-5381
  • Email Address: pemar@duke.edu
  • Websites:

Education

  • Ph.D. Electrotechnical Institute (Poland), 1991
  • M.S. University of Warsaw (Poland), 1985

Research Interests

Investigating relationships between structural and mechanical properties of biopolymers (polysaccharides, DNA, proteins), at a single molecule level.

Awards, Honors, and Distinctions

    Courses Taught

    • BME 394: Projects in Biomedical Engineering (GE)
    • BME 493: Projects in Biomedical Engineering (GE)
    • EGR 393: Research Projects in Engineering
    • ME 331L: Thermodynamics
    • ME 391: Undergraduate Projects in Mechanical Engineering
    • ME 513: Nanobiomechanics
    • ME 592: Research Independent Study in Mechanical Engineering or Material Science

    In the News

    Representative Publications

    • Apostolidou, D; Zhang, P; Yang, W; Marszalek, PE, Mechanical Unfolding and Refolding of NanoLuc via Single-Molecule Force Spectroscopy and Computer Simulations., Biomacromolecules, vol 23 no. 12 (2022), pp. 5164-5178 [10.1021/acs.biomac.2c00997] [abs].
    • Marszalek, PE, Capturing intrinsic nanomechanics of allostery., Biophysical Journal, vol 121 no. 23 (2022), pp. 4415-4416 [10.1016/j.bpj.2022.10.037] [abs].
    • Li, Q; Apostolidou, D; Marszalek, PE, Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations., Methods (San Diego, Calif.), vol 197 (2022), pp. 39-53 [10.1016/j.ymeth.2021.05.012] [abs].
    • Zhang, P; Wang, D; Yang, W; Marszalek, PE, Piecewise All-Atom SMD Simulations Reveal Key Secondary Structures in Luciferase Unfolding Pathway., Biophysical Journal, vol 119 no. 11 (2020), pp. 2251-2261 [10.1016/j.bpj.2020.10.023] [abs].
    • Ding, Y; Apostolidou, D; Marszalek, P, Mechanical Stability of a Small, Highly-Luminescent Engineered Protein NanoLuc., International Journal of Molecular Sciences, vol 22 no. 1 (2020) [10.3390/ijms22010055] [abs].