Piotr E. Marszalek

Marszalek

Professor of Mechanical Engineering and Materials Science

My research focuses on investigating relationships between structural and mechanical properties of biopolymers (polysaccharides, DNA, proteins), which I study at a single molecule level. My main approaches are experimental scanning probe microscopy techniques and computational methods involving Molecular Dynamics simulations and ab initio quantum mechanical calculations. The ultimate goal of this research is to understand the above-mentioned relationships at an atomic level and to apply the knowledge gained towards elucidating basic phenomena such as: molecular recognition that mediates interactions between proteins and sugars, mechanotransduction that underlies mechanical sensing and hearing in all organisms, and protein folding that is fundamental to all biology. Our DNA research is aimed at exploiting atomic force microscopy techniques to develop new ultra-sensitive assays for detecting and examining DNA damage, the process underlying carcinogenesis, and to increase our mechanistic understanding of DNA damage and repair processes. This research, in addition to its basic science aspects will lay a foundation for the future use of AFM technologies in the nanoscale DNA diagnostics with a potential to directly benefit human health.

Appointments and Affiliations

  • Professor of Mechanical Engineering and Materials Science

Contact Information

  • Office Location: 3387 Fciemas Building, Box 90300, Durham, NC 27708
  • Office Phone: (919) 660-5381
  • Email Address: pemar@duke.edu
  • Websites:

Education

  • Ph.D. Electrotechnical Institute (Poland), 1991
  • M.S. University of Warsaw (Poland), 1985

Research Interests

Investigating relationships between structural and mechanical properties of biopolymers (polysaccharides, DNA, proteins), at a single molecule level.

Awards, Honors, and Distinctions

    Courses Taught

    • ME 331L: Thermodynamics
    • ME 391: Undergraduate Projects in Mechanical Engineering
    • ME 392: Undergraduate Projects in Mechanical Engineering
    • ME 491: Special Projects in Mechanical Engineering
    • ME 513: Nanobiomechanics
    • ME 555: Advanced Topics in Mechanical Engineering
    • ME 592: Research Independent Study in Mechanical Engineering or Material Science
    • MENG 550: Master of Engineering Internship/Project
    • MENG 551: Master of Engineering Internship/Project Assessment

    In the News

    Representative Publications

    • Li, Q; Apostolidou, D; Marszalek, PE, Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations., Methods (San Diego, Calif.) (2021) [10.1016/j.ymeth.2021.05.012] [abs].
    • Ding, Y; Apostolidou, D; Marszalek, P, Mechanical Stability of a Small, Highly-Luminescent Engineered Protein NanoLuc., International Journal of Molecular Sciences, vol 22 no. 1 (2020) [10.3390/ijms22010055] [abs].
    • Zhang, P; Wang, D; Yang, W; Marszalek, PE, Piecewise All-Atom SMD Simulations Reveal Key Secondary Structures in Luciferase Unfolding Pathway., Biophysical Journal, vol 119 no. 11 (2020), pp. 2251-2261 [10.1016/j.bpj.2020.10.023] [abs].
    • Marszalek, PE; Oberhauser, AF, Meeting report - NSF-sponsored workshop 'Progress and Prospects of Single-Molecule Force Spectroscopy in Biological and Chemical Sciences'., Journal of Cell Science, vol 133 no. 16 (2020) [10.1242/jcs.251421] [abs].
    • Wang, D; Marszalek, PE, Exploiting a Mechanical Perturbation of a Titin Domain to Identify How Force Field Parameterization Affects Protein Refolding Pathways., Journal of Chemical Theory and Computation, vol 16 no. 5 (2020), pp. 3240-3252 [10.1021/acs.jctc.0c00080] [abs].