Nenad Bursac

Image of Nenad Bursac

Professor of Biomedical Engineering

Bursac's research interests include pluripotent stem cell therapies for heart and muscle disease. Cardiac and skeletal muscle tissue engineering. Cardiac electrophysiology and arrhythmias. Genetic modifications of stem and somatic cells. Micropatterning of proteins and hydrogels. Organ-on-chip technologies.

The focus of my research is application of stem cells and tissue engineering methodologies in experimental in vitro studies and cell and tissue replacement therapies. Micropatterning of extracellular matrix proteins or protein hydrogels and engineering of synthetic scaffolds are used to build stem cell-derived cardiac and skeletal muscle tissues that replicate the structure-function relationships present in healthy and diseased muscle. These systems are used to separate and systematically study the roles of structural and genetic factors that contribute cardiac and skeletal muscle function and disease at multiple organizational levels (from single cell to 3-dimensional tissue). Optical recordings with voltage and calcium sensitive dyes in synthetic tissues allow us to analyze and optimize normal electrical function as well as study complicated spatio-temporal changes in electrical activity encountered in cardiac arrhythmias and fibrillation. Contractile force measurements allow us to explore factors that would optimize mechanical function of engineered tissues. Examples of the current research projects include: 1) design of co-cultures made of cardiac and different types of stem cells to model and study cell and tissue therapies for cardiac infarction and arrhythmias, 2) local and global gene manipulation in cultures of cardiac and other cell types, 3) engineering of vascularized cardiac and skeletal muscle tissue constructs with controllable structure and function, 4) implantation of stem cell-derived cardiac tissue patches in animal models of cardiac infarction, and 5) design of synthetic excitable tissues for experimental studies and novel cell therapies.

Appointments and Affiliations

  • Professor of Biomedical Engineering
  • Associate Professor in Medicine
  • Professor in Cell Biology
  • Member of the Duke Cancer Institute
  • Co-Director of the Regeneration Next Initiative

Contact Information:


  • Ph.D. Boston University, 2000
  • B.S.E. University of Belgrade, 1994

Courses Taught:

  • BME 301L: Bioelectricity (AC or GE)
  • BME 394: Projects in Biomedical Engineering (GE)
  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • BME 507: Cardiovascular System Engineering, Disease and Therapy (GE, BB, EL)
  • BME 578: Quantitative Cell and Tissue Engineering (GE, BB, MC)
  • BME 791: Graduate Independent Study
  • BME 792: Continuation of Graduate Independent Study
  • EGR 393: Research Projects in Engineering
  • NEUROSCI 301L: Bioelectricity (AC or GE)

Representative Publications:

  • Jackman, CP; Ganapathi, AM; Asfour, H; Qian, Y; Allen, BW; Li, Y; Bursac, N, Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation., Biomaterials, vol 159 (2018), pp. 48-58 [10.1016/j.biomaterials.2018.01.002] [abs].
  • Rao, L; Qian, Y; Khodabukus, A; Ribar, T; Bursac, N, Engineering human pluripotent stem cells into a functional skeletal muscle tissue., Nature Communications, vol 9 no. 1 (2018) [10.1038/s41467-017-02636-4] [abs].
  • Shadrin, IY; Allen, BW; Qian, Y; Jackman, CP; Carlson, AL; Juhas, ME; Bursac, N, Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues., Nature Communications, vol 8 no. 1 (2017) [10.1038/s41467-017-01946-x] [abs].
  • Polstein, LR; Juhas, M; Hanna, G; Bursac, N; Gersbach, CA, An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis., ACS Synthetic Biology, vol 6 no. 11 (2017), pp. 2003-2013 [10.1021/acssynbio.7b00147] [abs].
  • Cao, J; Wang, J; Jackman, CP; Cox, AH; Trembley, MA; Balowski, JJ; Cox, BD; De Simone, A; Dickson, AL; Di Talia, S; Small, EM; Kiehart, DP; Bursac, N; Poss, KD, Tension Creates an Endoreplication Wavefront that Leads Regeneration of Epicardial Tissue., Developmental Cell, vol 42 no. 6 (2017), pp. 600-615.e4 [10.1016/j.devcel.2017.08.024] [abs].